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Abstract 

In this  paper,  a  methodology  for  self-calibrating  a  multi-beam  laser  tracking 

measurement  system  with  planar  constraints  is  proposed.  A  model  for  the  multiple-beam 

laser  tracking  system  is  derived.  Through  error  analysis  it  is  shown  that  using  even  rough 

angular  measurement of the  gimbal  joint  positions may  improve the  overall  system 

calibration  results.  Parameter  observability  issues  are  studied  for  self-calibrating  the 

multiple-beam  laser  tracking  system.  The  results  reveal  the  applicability of planar 

constraints to the  system  self-calibration.  Results of simulation  and  experimentation on a 

prototype  system  are  reported to show  the  applicability of the  proposed  calibration 

strategies. 
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1. Introduction 

Laser  tracking  systems  have  advanced  rapidly  since  1980’s  because of a  growing 

worldwide  effort to develop  internationally  accepted  procedures  and  terminology  for  the 

measurement  and  description of robot  performance [l 1. 

Lau  and his colleagues  &om  National  Bureau of Standards [ 1 ] were  among  the  first 

to develop  a  laser  tracking  system  for  rapid  measurement of the  positional  accuracy of 

robots.  The  laser  tracking  system  Lau  produced  was an automatic,  spherical  coordinate 

laser  measurement  system,  where  a  laser  interferometer is accurately  pointed, by  means of 

a  two-angle  servo  system, to a  reflector  attached to the  robot  wrist. A further  refinement 

5-D Laser  tracking  system  was soon proposed by  Lau et a1 [2 ] that  could  determine  the 

three  dimensional  static  and  dynamic  positional  accuracy of a  robot  end-effector to a  few 

parts  in 100,000, and  wrist  orientations to within 2 arc seconds. 

Mooring [7] proposed  a  model  that  features  several  geometric  error  parameters to 

account  for  the  gimbal  rotation  axes  which are neither  orthogonal  and  nor  intersecting.  His 

rather  interesting  calibration  strategy  employed  a  grid of target  points  (refer to Figure 1) 

placed at a  location  that  allows  the  reflected beam to strike  any of the  grid  points.  The 

target  points are on a  planar  surface  and  the  location of each  point  is  precisely known in 

the  target  coordinate  system.  The  calibration  problem is then  reduced to that of finding  a 

set of parameters  in the system so that  the  difference  between  the  computed  target 

location  and  the  actual  target  location  is  minimized. 
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Figure 1 Mooring's  Calibration  Strategy  proposed 

Parker  et al [8] from  National  Radio  Astronomy  Observatory  have  used  a 

rangefinder  (Figure 2) with  the  fast  multiple  range  capability to carry  out  two  tasks: (1) 

measurement of the  shape of a  reflector  surface  and  correction  for  changes  due to gravity 

and  thermal  effects. (2) relating  the  positions of all  the  measured  surface  points to a 

reference  frame of points  fixed  in  the  ground  around  the  telescope.  The  rangefinder  uses 

the  propagation  time of a  beam of infi-ared  radiation to measure  distances of up to 120 m 

with errors of less than 50 p. 

Greenleaf [9] introduced  the  multi-lateration  method  into  the 3-D laser  tracking 

measuring.  He  used  a  four  single-beam  laser  tracking  interferometers  and  a common cat's 

eye  target to obtain pm precision  measurements.  Three  length  measurements of a  single 

target  provided by three  trackers uniquely  determine  the  location of the  target  point  in 3-D 

space.  The  fourth  laser  tracker  incurs  a  redundancy  in  the  data so the  instrument 

parameters  such as the  interferometer  counter  offsets  can  be  estimated  numerically  from  a 

number of position  reading. 
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F i g  1. The geometry of the metrology system 

Figure 2 Geometry of the  metrology  system  developed by NRAO 

Zhuang  and Roth [4 ] [ 5  ] too used  multi-lateration  method  for the self-calibration of 

a  multiple-beam  laser  tracking  system.  Four trackers follow  a  common  retroreflector 

attached a moving target.  Each  tracker  has  a  tracking  mirror  mounted  on two orthogonal 

rotation  axes.  The  mirrors are rotated  based  on  the  offset  position of the  retro-reflected 

beam  in order to aim the  laser  beam  at  the  target  center.  The  three  length  measurements 

combined  with  the  knowledge of the  three  mirror  center  location  provide  a  means to 

compute the target  positions. A least-squares  technique is  used to calibrate all the 

parameters  in  the  overdetermined  system.  Zhuang  and Roth [6 ] later  proposed a model to 

include all these  geometric errors which  satisfies  the  model  requirements of completeness, 
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proportionality,  and  equivalence [ 121. 

In this  paper,  a  methodology  for  self-calibrating  the  laser  tracking  measurement 

system  was  proposed. A model  characterizes  the  multiple-beam  laser  tracker  system  was 

derived.  Through error analysis  it  is  shown  that  even  rough  angular  measurement  may 

improve  the  overall  system  calibration  results.  Various  calibration  strategies  utilizing 

planar  constraints  were  proposed to deal  with  different  system  setups.  For  each  calibration 

strategy,  observability  issues on estimating unknown parameters  were  studied.  The  results 

revealed  the  applicability of the  planar  constraints to the  system  self-calibration.  Results 

fiom simulations  and  experimental  studies are reported. 

2. Modeling of a Multiple-Beam  Laser  Tracking System 

A multiple-beam  laser  tracking  system  needs to have  a  minimum of three  trackers  for 

the  calculation of target  positions.  The  kinematic  relationship  among  the  three  trackers  is 

depicted  in  Figure 3. Let  the  base  coordinate  system of tracker  1  serve as the  reference 

coordinate  system of the  entire  multi-beam  laser  tracking  system.  The  transformation  &om 

the  base  coordinate of tracker k to that of trackerj is  denoted byjTk , forj, k = 1,2, 3, the 

distance  from  the  beam  point of incidence on the  mirror of the kth tracker to the  target  is 

denoted by lk.  Let  the  target  position  with  respect to the  reference  coordinate  system  be 

denoted by F. Let  the  point of incidence  at  the  mirror  surface of the  kth  tracker  be  denoted 

by c k  . Point c k  is represented  with  respect to the kth tracker  base  coordinate  system. 

These  are  assumed  known  for  the  time  being.  Let  us  also  assume  that 'T2 , T3, and  b  for 

k = 1,  2, 3 are  known.  These  assumptions  characterize  a  well-calibrated  system.  One  is 

then  able to compute  the  target  position  in  the  reference  coordinate  system. 

1 
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Figure 3 Schematic of a  multiple-beam  laser  tracking  system 

Whenever  a  gimbal's  angular  measurements as well as the  distance  measurements of 

the  laser  interferometers  are  used,  one  is  able to compute  the  target  position,  provided  that 

each  tracker  is  tracking  a  distinct  target  point on the moving  rigid  object.  The  orientation 

of the  target  can  also be measured if each  tracker  is  locked on a  different  retroreflector. 

However,  angular  measurements of a  gimbal are typically  inferior to the  distance 

measurements of a  laser  interferometer  in  terms of resolution.  The  following  sections 

discuss the computation of target  positions  using  distance  measurements  only as well as 

joint  angular  and  distance  measurements. 

2.1 Target  position  computation using distance measurement only 

For  coordinate  measuring  that  is  based on distance  measurements  only,  a minimum 

number of three  trackers  are  needed. It is assumed  for  the  time  being  that  there is neither 

mirror  center  offset  nor  gimbal axis misalignment. The  target  coordinates are obtained 

fiom the  distance  measurements by triangulation  based on the  knowledge of the  locations 

of the  three  trackers ( i.e., the  relative  distances among the  mirror  centers ) and  a 

reference  point  in  the  world  coordinate  fiame. 
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Using  only  distance  measurements  in  computing  the  coordinate  measurements  can  be 

accurate  only  when  the  laser  tracking  system is ideal. If the  mirror  centers shift while the 

trackers are following the target,  angular  measurements  need to be  included  in the  model 

to avoid  large  errors.  Angular  measurements,  although  being  relatively  inaccurate, are 

useful  in  predicting  the  mirror  center  locations,  which are in turn  used to compute  the 

target  position  along  with  the  distance  measurements. In the  next  section  both  distance 

and  angular  measurements are used to calculate  the  target  measurements. 

2.2 Target  position computation using  both angular and distance measurements 

The  setup of the  multiple-beam  system is as shown  in  Figure 4. Let  the  base 

coordinate  system of tracker 1 be  the  reference  coordinate  system of the  multi-beam  laser 

tracking  system.  Frames { 1 }, ( 2 )  and (3) are the local  fiames of the  three  trackers 

respectively.  The  nominal  mirror  center of trackers 1, 2 and 3 are at the origins of fiames 

{ 1 ), (2) and (3).  The  transformation fiom the  base  coordinate of tracker k to that of 

trackerj is  denoted byjT,  forj, k = 1,2, 3. The  distance  fiom  the kth mirror  center to the 

target is denoted by Zk . Let A, B and C represent  the  points of actual beam  incidence  at 

the mirror  surface of the kth ( k = 1, 2, 3 ) tracker.  The  axes of fiame ( A )  are parallel to 

those of ( 1 ), (2) and (3). Their  origins are at point A, B and C respectively. A coordinate 

fiame { A ' }  is placed so that  its  origin is at point A,  its x axis is  coincident  with  line AB, 

and  its x-y plane  contains  lines AB and AC. Frame { A ' }  is  placed so that  the  coordinates 

of the  target are simple  with  respect to this  coordinate  system. 
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Figure 4 The  system  set  of  multiple-beam  laser  tracker 

Let  the  coordinates of the  beam  incidence  point on the mirror  sufface of the kth (k  = 
1, 2, 3) tracker be c k  in  their  respective  coordinate  fiame. Note that ck is a h c t i o n  of  the 

10 parameters of the  respective  single-beam  laser  tracker as well as the  tracker's gimbal 

angles,  Whenever  the  gimbal  moves, ci also  changes.  Given  the  10-parameter  single-beam 

tracker  model  derived in [6], along  with the gimbal angular distance  measurement, ck can 

be  computed. Ck may then be  transformed to the  reference  coordinate &%ne by ' T k .  Let 

the (3x3)  rotation  submatrix  and  (3x1)  position  vector of 'Tk be '& and ' t k ,  respectively. 

Then, 

The  target  position r is therefore  an  intersection  point  of  three  spheres  centered at Ick 

with  radius Zh each.  The  intersection  point is not  unique,  however  the  target  position  can 

always  be  practically  determined by the  physical  configuration of the  LTS.  The  following 

elements are considered known for  the  computation of the  target  position  with  regard to 

the  reference  fixme { 1 1 .  
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c1, the  coordinates of A , is known  with  respect to { 1 } by the first tracker model. 

c2, the  coordinates  of B , is  known  with  respect to (2) by the second  tracker model. 

c3, the  coordinates  of C , is known  with  respect to (3) by the  third  tracker  model. 

T2, the transformation  matrix fiom (2) to { 1 }, is  known. 1 

1 T3, the transformation  matrix fiom (3) to { 1 }, is known. 

1, , 1 2 ,  l3 the distances fiom A, B, C to P are known. ( 1 1  , 12 , 13 are  compensated 

using 1 , i  (’ , @ [lo]), where (pk is the  kinematic  parameter  vector  and 0, is the 

joint  variable  vector of the kth  gimbal. 

In the remaining  part of this  section, a set of equations is derived  for  computing  the 

target  position in the  reference  fiame ( 1 }. Note that all the  single-beam  tracker  models 

and the transformations  among the trackers are assumed pre-caliirated for the target 

position  computation.  The  key step is to transform  the  vectors ch fiom their  respective 

tracker  coordinate fkames to the  reference  coordinate fi.ame through  the  transformation 

matrices among the  trackers. To be able to use the  results  for  computing the target 

position  given  in [4], A,  B and C the  points of the  beam  incidence,  are  needed to be 

transformed to the M e  ( A  ’). The  target  point P is then  computed  in  fiame { A  ’1. Finally, 

the  position  vector is transformed itom ( A  ’1 to ( 1 } through  a  sequence of 

transformations. 

Step 1. The  transformation  matrix  relating ( A }  to { 11 is ITA = [; ‘;I. 
The  transformation  matrix  relating { B )  to (2) is ‘TB = [: 
The  transformation  matrix  relating {C> to (3) is ‘T, =[; 3 .  
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Step 2. Represent c;! , c3 in { A ) ,  which are denoted by A ~ ; ! ,  A ~ 3 .  For  instance, 

A C 2 = A q C 2 = A q  lqc2  and A ~ 3 = A q ~ 3 = A q  'T,c, 

Step 3. Represent c2, c3 in { A  '1. Denote A'RA = { x T ,  y ', z'} , where 

Thus,  the  position of B with  regard to { A  '> is: " c2 = A'RA A ~ 2  and 

The  position of C with  regard to { A  '1 is: " c3 = A'RA A ~ j  

The  coordinates of B and C with  regard to { A  '} are now  derived. By following  the 

same  triangulation  process as in Section 2.1, the  target  position in { A  '} can be calculated 

through  the  knowledge of the  coordinates  of B, C and  the three distances I ,  , 1 2 ,  1,. The 

coordinates of the  target P with  respect to { A  '} is  (refer to Figure 4) [4], 

rx = 

I: - I ,  + c,. c, -2r; 2 A' A' A' - 
rY - 

rz = &,/- ( 4 )  

where r,, r, and r, are the x, y, and z coordinates  of  the  target  point in the  reference  fiame. 

The  target  position  with  respect to & m e  { 1 > is 
'r= ITA "TA. r 
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where ATAq = [ A :  ;I. 
2.3 Sensitivity analysis of the multiple-beam  system 

The  argument is that  even  though  the angular measurement  accuracy of a gimbal is 

inferior to that of the  distance  measurement in a  laser  interferometer, the angular 

measurement  may still be used to predict  the  coordinates of the beam incidence  point at 

the  mirror  surface of the  each  tracker. This claim will be backed by both  sensitivity 

analysis  and  numerical  simulations. A differential  transformation,  which  relates the 

parameter errors to the measurement  residuals  plays an important  role in the  sensitivity 

analysis.  The  differential  transformation  corresponding to the kinematic  model of the  laser 

tracking  system  presented in Section 2.2 is derived  next. 

Let us consider  the  kinematic  model of laser  tracking system.  The  variables r and 'Ck 

(k=l, 2,3) are represented  in the reference  coordinate  system.  The  target  position  satisfies 

the following  equation, 

where lr and 'ck ( k=l,  2,3 ) are coordinates  of  the  target and the beam incidence on the 

kth mirror represented in coordinate  system f 1 ) .  Perturbing  both  sides  of  equation ( 6 ) 

yields, 

Identitication of dlck  and dlk enables of effective  compensation of  d'r. In order to 

study d'c, , let dck be analyzed fist. The error d 'Ck is then  related  to dc, by a fixed 

11 



transformation. 

For  the  one-tracker  configuration,  there  is  a  formula  relating 1, , 1, and I,. to I which 

is described  in  [6], 

1,  + I ,  = 1 + 1 ,  ( 9 )  

The  notation  is  defined  following  equation ( 10 ). As three  trackers are used  in the 

system,  the  tracker  index k is introduced, 

where Ik is the  distance  from the point at which the  incident  beam hits the  mirror surfixe 

on the k h  tracker to the  target  location, lm,k is  the  relative  distance  measured by the  kth 

tracker, 1 . k  is the  distance fiom the  reference  point to the kth tracker. 1s.k is the distance 

from  the  point at which  the  incident  beam  hits  the  mirror  surface on the kth tracker 

corresponding to the reference  point to the  point  at  which  the  incident  beam  hits  the 

mirror  surface on the  kth  tracker  corresponding  the  target  location  [6].  Perturbing ( 10 ), 

Normally, the measurement  accuracy of the  beam  travel  distance is much  better  than 

that of the tracker gimbal  angles.  Therefore d1.k can be neglected.  The  remaining  terms are 

The beam incidence c on the  mirror  with  regard to the  local  tracker  coordinate 

system  is: 

where Cr is the  coordinates of the  point at which the incident  beam  hits on the  mirror 

surface on the  tracker  corresponding to the  reference  point. bi is the  incoming  beam 
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direction  with  respect to the  tracker  coordinate  system. 

Using  the  tracker  index,  we  write 

‘ k  = ‘r,k f l s , k b l , k  k=1,2,3 ( 14 ) 

Perturbing ( 14 ) yields 

dck = dcr,k + bIdls ,k  +‘s,k&l?k k=1,2,3 ( 15)  

In ( 12 ) and ( 15 ), dZr,k, dbl and dc,, are fixed errors as these are functions of 

fixed  parameters. It is  assumed  that  these  fixed errors can be compensated  through 

calibration. In other  words,  the  effect of angular  measurement  noise on the  measurement 

accuracy of target  point  is of main  interest.  These errors are  reflected  in dls,k. dl,+ is a 

function of the kth gimbal joint  angles &,k and @?,k . Some  lengthy  derivation can establish 

that dls,k is  indeed  negligible [lo]. 

In summary, the main objective of calibrating  each  tracker  is to obtain  kinematic 

error  parameters of these  trackers  that  can be used  along  with  angular  measurements, to 

predict  the beam length  adjustment Is,& and  the  incident  point ck (the  subscript k is the 

tracker index).  Since the  angular  measurements of the  gimbals are not  sufficiently 

accurate,  the  predicted  incident  point  is  further  compensated by dck.and the  length 

measurement I k  is modified  by dlk. Let 1 x k  be the  laser  beam  length  offset  provided by the 

calibration of each  individual  tracker, c: represents  the  beam  incidence on the kth tracker 

mirror  provided  by the  calibration.  The  mirror  center  offset ck and  the  beam  length  offset 

can  then be computed by the following equations: 
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where pk and @k = [e*,k &,k ]' are respectively  the  parameter  and  joint  vectors of the  kth 

tracker. It is  essential  representing ck" and l,!k in terms of tracker  joint  and  parameter 

vectors.  Substituting ( 16 ) into (1) yields 

d C k  and I l k  cannot  be  separately  identified  since '& is fixed.  Fortunately  for  the  purpose of 

compensation,  these  do  not  need to be  separately  computed.  The errors represented by dck 

can be absorbed by It,. Therefore, ( 18 ) becomes 

where ck" is the beam  incidence on the  kth tracker  mirror  which  can be predicted  using ( 

14 ) and I l k  can be calibrated. ck" is the  beam  incidence on the kth tracker  mirror  provided 

by the  calibration of individual  trackers.  Since  the  gimbal  angles  and &k are  inferior to 

the  distance  measurements, ck" does not  accurately  represent the beam  incidence. 

However,  the  error  caused by the  inaccuracy of the  gimbal  angles  measurements  can be 

compensated by the  translation  vector ' t k  during  the  calibration  procedures.  Therefore, ck 

on the left  hand  side of ( 19 ) accurately  represents  the  beam  incidence on the kth tracker 

with  regard to the  coordinate  system { 1 >. Following  the  calculation of the  beam 

incidences of each  individual  tracker,  the  target  coordinates  can  be  computed by Equation 

( 2 )  through( 4 ) .  

1 
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3. Observability issues 

This  section  explores  the  parameter  observability of the  calibrated  multiple-beam 

laser  tracking  system;  refer to Figure 5. 

Figure 5 Calibration  scheme of a  multiple-beam  laser  tracking  CMM 

The  three-beam  laser  tracking CMM involves  real-time  measurements of the  tracker 

gimbal  angles  and  the  (interferometric)  relative  distance  fiom  the  laser  tracker to the 

points on the  planes.  The  number of points to be  measured on each  plane  should  exceed 

the total number of parameters to be calibrated, as each  measurement  only  generates  one 

measurement  equation. In the calibration  process,  either  one of the  coordinate  systems  in 

the  planes or the  machine  base  coordinate  system may  be chosen as the reference  frame 

for  the  whole  system. 

Two  calibration  strategies are proposed  next. In the  first,  one of the  plane  is  used to 

define  a  reference  coordinate  system,  and the plane  parameters are treated as known. The 

entire  system  is  calibrated in two stages. In the first  stage,  the  transformation fiom the 

reference  system to the  base  system of each  tracker is identified,  together  with  the 
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parameters of each  tracker. In the  second  stage,  we  calibrate  the two of the 

transformations  that  relate  the  three  trackers to each  other, as well as the beam length 

offsets  in  each  tracker. Note that  the  transformations  among  the  three  trackers  can  be 

extracted  fiom  the  model  obtained in  the  first  stage.  However,  recomputing of these 

transformations  in  the  second  stage  improves  the  calibration  accuracy. 

In the  second  method,  the  plane  parameters are considered  unknown.  The  reference 

coordinate  system is defined  by  the  base coordinate  system of the  first  tracker.  The 

individual  laser  trackers are calibrated  first.  By  doing so, the  unknown  geometric 

parameters of each  laser  tracker,  together  with  the  plane  parameters, are estimated.  The 

second  stage of this  method is identical to that of the  first  method.  The two calibration 

methods  are  explained  in  more  detail  next. 

A major  task of calibrating  a  multiple-beam  laser  tracking  system  is to ident* the 

relative  transformation  between  each  pair of individual  trackers.  Let  the ( 3 x 3 )  rotation 

submatrix  and (3x1) position  vector of I T ,  be 'Rk and l t k  respectively.  Then, 

where Ck ( k=l ,  2, 3 ) is the  mirror  center  offset  at  the  kth  tracker  local  coordinate  fiame 

and 'ck is the  kth  mirror center  offset  with  regard to the  reference  coordinate  fiame.  The 

governing  equations  for  computing  target  point r using  distance  measurements  are 

where 'Rk and ' t k  are respectively the rotation  submatrix  and  position  vector of ' T k  , and 

TI is a  4x4  identity  matrix.  Since  each  individual  gimbal has been  pre-calibrated, Cki and Zk 
1 

can  be  computed  with  the  measured  gimbal  angles  and  distances. 

In [lo], it  is  shown  that  whemever  planar  constraints are used to calibrate  a  robotic 

system,  a  necessary  condition is that  the  kinematic  parameters of the  unconstrained  system 

are  observable.  The  next  section  examines  the  observability of the  unconstrained  system 
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for two related  cases. 

3.1 Case 1: gimbal angular measurements relatively accurate 

Whenever the  angular  measurements of all  the  trackers are relatively  accurate,  the 

only unknowns are transformations I T ,  and I T 3  . These  transformations  can be determined 

if target  points  are  computed  independently by each  tracker. This problem  is  equivalent to 

the  problem of determining  a  transformation  that  maps a set of points fiom one coodinate 

frame to another,  and  solutions  can be found  in [l 11. 

One  may  also  use an iterative  procedure to further  improve  the  accuracy of 

estimation. In this  case,  an  error  model  that  relates  the  measurement  vector to the 

parameter  error  vector is essential  in  studying  the  observability of the  system. To this  end, 

the error model is derived  next. 

In ( 21 1, 'Rk,  'tk, and r are variables to be adjusted  iteratively. ck,i and l k  can IX 

computed  with  measured  gimbal  angles,  distances  and  the  parameters  which are pre- 

calibrated  in  each  individual  laser  tracker.  Perturbing ( 21 ) yields 

where d'R1 = dtl = 0. However, d'Rk = 'RkT.@6J, where ' 6 k  is the  orientation  error 

vector of 'Rk and Q(V) denotes  the  skew  symmetric  matrix of vector v. Notice ako 

6dck.i = - LR(ck,i) ' 6 k  . Therefore, 

Substituting ( 23 ) into ( 22 ) yields 

( lRk~k, i+ l tk   - r ) ( -1RkTS2(~k, i )16k  +dk, -dr) = 0 k =  1,2,3 ( 24 1 

The  Jacobain  matrix  can be obtained by solving dr fiom ( 24 ). In this  case,  the 

(12x1) parmeter vector p. consists of '4 , '& , d't2 and dt3.  Let vk 'R&j + tk - r, vk is 1 
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the  vector fkom the  origin of the  kth  tracker  frame to the  target.  Since 'tl = 0, d'tl = 0, 

equation ( 24 ) can be written as 

where 

Theorem 1: The  Jacobian of the  multiple-beam  system  can be written  into  the 

following f o m  

if and  only if the  three  vectors  connecting  origins of the  three  tracker  frames to the  target 

point  are  linearly  independent. 

Proof. The  necessary  and  sufficient  condition  for  the  matrix H to be  invertible  is 

that  the  three  vectors vk are  independent. vk represents  the  vector fi'om the  kth  tracker to 

the  target.  Therefore,  in  order to write  the  Jacobian  in  the  form ( 27 ), the  three  vectors 

fiom the  origins of the  three  tracker  fiames to the target  point  should be independent. 

Q.E.D. 

Theorem 1 illustrates  that  one of the  necessary  conditions  for  the  constrained  system 

to be observable  is  that the three  trackers  do  not lie on the same  line.  Otherwise,  the  three 

vectors  from  the  three  trackers to the  target  point are dependent. 
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The  parameter error vector  is  observable if the  Jacobian  matrix of the error system  is 

non-singular [ 121. Examination of the  Jacobian  matrix  structure,  reveals  the  following 

fact : 

Theorem 2: The  orientational error parameters of the kth tracker  are  not  observable 

whenever  the  mirror  center  offset of the  tracker is zero. 

Proof: Whenever the  mirror  center  offset of the kth tracker  is  zero, LR(c, i )  s 0. The 

corresponding  terms in the  Jacobian  matrix are also  zero.  Consequently,  the  corresponding 

error parameters are not  observable. 

Q.E.D. 

Theorem 2 reveals  a  serious  problem.  By  using  the  error  model ( 22 ), the  algorithm 

is  not  robust  due to the  fact  that  the  Jacobian  matrix  is  near  singularity  all  the  time. This is 

because  the  mirror  center  offset of each  tracker is very small. This fact  prompted  the 

authors to devise  the  following  alternative  scheme  for  the  calibration of the  multiple-beam 

system.  The  proof of Theorem 2 also shows  that  the  orientation  error of '& is of 

secondary  importance,  compared to its positional  error. 

We can  calibrate  in  advance  the  transformations 'T2 and 'T3 , assuming that  each 

tracker  can  independently  measure  the  target  points.  After '2'2 and ' T3 are  determined,  we 

then  further  improve  the  accuracy of It2 and It3 by  using  an  iterative  method. In this  case, 

the enor model is 

with d't~ = 0. Again,  Let vk E Rgki + Itk - r, vk is the  vector  @om  the kth tracker to the 1 

target. Let H = v2 . Then  the  above  becomes I v : ]  
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The  corresponding  Jacobian is 

provided  that His invertible.  The  observability of dt2 and  d1t3  is  further  investigated  next. 

To  estimate  the unknown It2 and 'd3 ,  at least  three  measurements  must be taken.  The 

corresponding  Identification  Jacobian is 

0 0  
Hi1 0 
0 Hi' 

where  the  second  index of v and  the  index of H denotes  the  first,  second  and  third 

measurement. 

Theorem 3: Assume  that  three  target  points rl, r2, and  r3  are  measured.  The  vector 

from  kth  tracker to jth target  point is vkj. The  Identification  Jacobian of the  multiple-beam 

laser  tracking  system is non-singular if and only if 

(1) The  three  vectors vkj (k  = 1,2,3) are  linearly  independent whenj = 1,2, 3, and, 

20 



(2) At least  three  independent  target  measurements are obtained by the  second  and  third 

trackers. 

The  proof of Theorem 3 is  given  in  the  Appendix.  The three independent  target 

measurements  obtained  by  the  second tracker means that  the  vectors  originating fiom the 

origin of the tracker  frame to the  three  target  points  are  independent,  and the same  for  a 

suitable is third  tracker. Note that in order to iteratively  solve  for  the unknown parameter 

error  vector,  an  initial  condition  must be given.  Since 'T2 and ' T3 can be determined  in  a 

closed  form  with  the  assumption  that  the  gimbal angular measurements are accurate,  the 

initial  condition is not  difficult to obtain.  Moreover,  the  result  obtained in this  section is 

essential  for  the  study  given  in  the  next  section. 

3.2 Case 2: gimbal angular measurements are not sufficiently accurate 

When angular measurements of the  trackers  are  not  sufficiently  accurate,  the 

unknowns are ' T2 and T3 as well as dlk for  each  tracker.  As  discussed  in  Section 3.1, the 

rotation  matrices *& and 'R3 can be pre-calibrated in advance  with  the  assumption  that the 

uncertainty in the gimbal  angular  measurements  is  negligible.  Furthermore as their 

accuracy is of secondly  importance  compared with that of the position  vectors,  the 

remaining task is to calibrate '82 and I t 3  and dlk for k = 1,2, 3. 

The  governing  equations  for  computing  target  point r using  distance  measurement 

are 

where ck,; and I," are the  predicted  quantities  before  compensation.  Perturbing  both  sides 

of the  equation yields, 
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Since d't, = 0, equation ( 33 ) is equivalent to the  set of equations 

-vl .dr = I ,  dA1, T 

vZT(d' tZ  -dr )  =I,dAl, 

vgT (dlt, - dr)  = 13dA13 

Equations ( 34 ) - ( 36 ) can be rewritten in the  following  matrix form, 

Hdr=[  v! ;][:1:1]+[ I ,  0 I ,  0 O ] ~ , ~  0 dA1, 

0 v3 0 0 I ,  dAl, 

According to Theorem 1 H can be  moved to the  right-hand  side of ( 36 ) if the  three 

vectors f?om the  three  trackers to the  target  point are independent. In this  case,  the 

corresponding  Jacobian  is 

o z , o o  

0 v3 0 0 I ,  
'-.I." 9. 0 I ,  

I order to estimate  the unknowns, at  least 4 measurements  have to be  taken.  The 

Identitication  Jacobian of the  system is obtained by stacking  multiple  Jacobians J of the 

form ( 38 ). 

Theorem 4: Assume  that  four  measurements  are  taken.  The Identification Jacobian 

of the  multiple-beam  laser  tracking  system  is  singular if and  only if 
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where ak, bk, ck are scalars s a t i s m  

1 1  v, 1 1  for k = 1,2  andj  = 1,2,  3,4. The  proof of Theorem  4 is given  in 

.. The  physical  meaning  can  be  explained fiom studying  the  matrix  given in 

T 
(46). It can be rewritten as uk,2 - uf,l 

uk,3 - u:,I 
. Then  necessary  and  sufficient  condition  for 

the  matrix to be  nonsingular  is  that  the  last  three  elements of the  first  column uk.2 - &,I , 

uk3 - ukl , uk4 - ukl are linearly  independent.  This  implies  that  using  a  single-plane 

constraint,  one  cannot  calibrate  a  multiple-tracker  system,  since  the  three  vectors will 

always  be  singular  in  this  case. 

4 Simulation and Experimental  Results 

One of the  objectives of the  simulation  study  is to veriQ  whether  the  three-plane 

three-tracker  setup  works  at all  and  can  be  applied to calibrate  a  multi-beam  LTS.  Another 

objective  is to compare caliiration results  between  the  method  that  uses  both  the  angular 

and  distance  measurements  and  the  one  that  uses  only  distance  measurements. In the  case 

of using  angular  measurements,  it is assumed  that  these  measurements are much  less 

accurate  than  the  distance  measurements.  Under  this  assumption  we  need to see if the 

coarse  angular  measurements  can  improve  the  calibration  performance, as the  theory 

predicts.  Experimental  verification  data  was  collected  using  the  LTS in the  Robotic  Center 

at Florida  Atlantic  University.  The  data  was  used to calibrate  the  multi-beam  LTS  model. 

4.1 Simulation  results 

The  simulation  program  models  three  laser  trackers  and three caliiration planes. 

Refer to Figure 6 for  the  system  setup.  The  actual  values of the  parameters of the  trackers 

and  the  planes are listed  in 
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Table  1  and  Table 2. The  values of the  parameters  dictating  the  transformation  matrices 

relating  the  coordinate  systems of trackers III and I, trackers I1 and I are  presented  in 

Table 3. The  planes are placed so that  their  normals are linearly  independent.  Noise  is 

added to the  angular  and  distance  measurements.  Likewise  the  noise  added to the  angular 

measurements is uniformly  distributed  between -30 prad  and 30 pad. The  noise  added to 

the  distance  measurements  is  [-1  pm  1  pm]. A noise  uniformly  ranging  f+om -10pm to 

10pm is  added to the 3D measurements to simulate  the  situation  that  the  plane  may  not  be 

perfectly  smooth. 

tracker I1 
2 4 

" 
"" 

"" 

" 
"" 

"" 
""" 

&fYY x tracker I 

"t 
coordinate 
system X 

Figure 6 System  setup of the  calibration of a multiple-beam  LTS 
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Table 1 Plane  parameters  under  system  setup I1 
I Parameters I Plane I I Plane 11 I Plane 111 i 
n 

cos(  10") cos(  1 0°) 1 a(@ 
{-cos(lO"), 0, -sin(lO")) (-c0s(10"), -Sin(lO"), O }  {-L o,o> 

Table  2  The  actual  values of the  parameters of the three trackers 
Parameters  tracker I11 Tracker I1 tracker I 
* b1 (-0.5012,  -0.8661,  (-0.5012,  -0.8661,  (-0.5012,  -0.8661, 

0.0013)  0.0013)  0.0013) 
1, (mrli) 2000.1  2000.1  2000.1 

@x 1 c y  ) (m) 

{ 90. lo, 90.1 ", 90.02") {90.1",  90.1",  90.02")  {90.1",  90.1",  90.02") { a ] ,  d&,  a2) 

{ 0.01, 0.01 ) { 0.01, 0.01 ) { 0.01,0.01 ) {al e21 (mm) 
{ 0.1,O.l } { 0.1,O.l 1 { 0.1,O.l 1 

Table 3  The  parameters in the  transformation  matrix  between  coordinate  systems of 
the  laser  trackers 

Parameters in the  transformation  matrix  From  tracker I1 to I 

0 0 Y (m) 
0.35 -0.35 x (m) 
-10" 10" W (degree) 
-10"  -10" 4 (degree) 
0 0 & (degree) 
fiom tracker I11 to I 

(m) -0.5  -0.5 

The  calibration  procedures are outlined in [IO]. The  three  trackers are calibrated 

individually  using  a  nonlinear  least-squares  procedures. As a  result,  all  the  parameters of 

each  tracker  are  obtained.  The  parameters of the  transformation  matrices  relating dserent 

trackers are also estimated.  Then  the 6 translational  parameters  and  3  beam  distance 

offsets are fine  tuned  using  the  measurements fiom all the  three  trackers.  Figure 7 and 

Figure 8 show  the  simulation  results  for  both  calibrations.  The y axes of both  figures 

represent  the maximum, mean  and  minimum  values of the  difference  between  the 

computed  target  coordinates  and  the  actual  target  coordinates.  The x axis represents  the 

number of measurements  used in the  simulation.  The  condition  numbers  for  both 

calibrations are between lo3 and lo4. It is  obvious  that  the  target  coordinate  error fiom 
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the calibration  using  both  angular  and  distance  measurements is by order of magnitude 

smaller  than  that fiom the  calibration  using  distance  measurements  only. This 

demonstrates  that  the  angular  measurements  can  still be successhlly used to compute  the 

mirror  center  offset. 

m .- e 3.00 

UJ 2.50 
L 
S 

m 
E 2.00 
n -  
*) E 1.50 
.E 5 
2 1.00 
2 5 0.50 

2 0.00 ti 

r Average 
Maximum 

,minimum ""- 

." 
9 19 29  39 49 59 

number of measurements 

Figure 7 The  calibration of the  multiple-beam  laser  tracking  system  using  distance 
measurements  only 

0.07 
g 0.06 
c E 0.05 

0.04 
t 5 0.03 

-- v 

U U J  
ti 8 0.02 s E 0.01 

0 
9 14 19 24  29 34 39 44 

number of measurements 

maximum 

Figure 8 The  calibration of multiple-beam  laser  tracking  system  using  both  angular  and 
distance  measurements 
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4.2  Experimental  results 

4.2.1  Experiment setup 

An experiment  multi-beam  laser  tracking  system  was  built  and  tested  at  the  FAU 

Robotics  Lab  (see  Figure 9 ). Figure  10  shows  the  manual  driven  Mitutoyo  CX-D2 

coordinate  measuring  machine  (CMM)  used to emulate  the  calibration  planes.  Each 

tracking unit uses an HP 10705A  laser  interferometer  system  and  several HP 10701A 

beam splitters to direct  the  laser  beam  towards to the  tracking  mirror.  The  tracking  mirror 

is mounted on a  Aerotech  rotary  table.  A  comer-cube  retroreflector is firmly  mounted on 

the CMM  which  was  located  at  a  distance of 2m  away  &om  the  gimbals.  The  CMM has a 

nominal  accuracy of O.O5mm, a  repeatability of 0.Olmm  and  a  work  volume of 

400x500x800mm3. The  window of the  tracking  mirror is 19mm in diameter  while the 

cross-section  diameter of the  laser  beam is approximately 8mm in diameter. To implement 

each  tracker gimbal, an Aerotech  ADR150-2  direct-drive  rotary stage is installed for the 

vertical axis, and  Aerotech ADWOO-5 direct-drive  rotary  stage is used  for  the  horizontal 

axis. The  angular  encoder  accuracy of both  rotary  tables is around 5 arcseconds. 

Figure 9 The  Experiment Setup of the  Multiple-beam  Laser  Tracking  System 
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Figure 11 illustrates  schematically  the  relative  locations of the  three  trackers  and  the 

CMM.  The coordinates  marked on each  tracker  were  measured by  plain  rulers.  These are 

respect to the  CMM  coordinate  system.  Two of the  trackers are placed  in the front row 

and are approximately  0.70m  apart.  The  third  tracker is placed  about  0.50m  higher  than 

the  two  trackers.  Two sets of experimental  data  were  collected.  The  second  set of data 

was  collected on a  different  day  from  the  first  one.  For  the  first  set of experimental  data, 

the CMM  was  used to form  three  planes by  being  placed  in three  different  orientations  and 

places. In the  first  place,  the  CMM  was  manually  driven to move  along x and y axes so 

that  these  points are on the  same  plane.  Thirty  points  were  measured on the  first  plane. 

Then  the  rotary  table on which the CMM  was  situated  rotated  a  certain  degree  about  its 

vertical axis. Again the CMM  was  manually  driven to move  along x and y axes to so that 

30 points  were  measured. In this  way,  the 30 points  were on a  second  plane.  Similarly  for 

the  third  plane.  Similar  procedures  were  applied to obtain  the  second  set of experimental 

data. This time,  the  rotary  table on which  the  CMM  was  situated  was  moved 

approximately  0.3m  closer to the  trackers.  Then  the  CMM  was  manually  rotated  twice to 

form  three  planes. On each  plane, 20 points  were  measured.  The  following  calibration 

used  the first set of experimental data to calibrate  the  parameters of the  laser  trackers  and 

the  planes.  The  second  set of experimental data were  used  for  verification. 
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Figure 10 Mitutoyo  CX-D2  Coordinate  Measuring  Machine in the  Robotics  Center  at 
FAU 

In addition to the  experiments  described  above,  a  third  set of experimental  data  was 

collected fiom a similar experimental  setup  one  year  before. In that  experiment,  a  glass 

plane  instead of a CMM was used to construct  the  calibration  planes. Similarly, the  glass 

plane  was  situated on a  rotary  table.  During  the  experiments,  the  glass  plane  was  placed  at 

3 different  orientations  and  positions to form three  planes. In the fist position, 23 points 

on the  glass  plane  were  measured by the  three  trackers.  Two  more  subsets of data  were 

collected  after  the glass plane  was  placed  with  different  positions  and  orientations.  The 

calibration  model  was  applied to this  third  set of measured  data  more  than  a  year  after  it 

was taken. 
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f z2 

x3 {0.1016m, 0.2534m, 2.235m) 

f 

xz {-0.3842m, -0.2540m, 2.184 
{0.4191m, -0.2540m, 2.184m) 

Figure  1 1 The  geometric  setup of the  multiple-beam  laser  tracker  and  CMM 

4.2.2 Experimental  results 

The  calibration of the  multiple-beam  LTS  consists of two  stages.  The  first  stage 

involves  the  calibration of the  individual  laser  trackers.  The  second  stage is for  calibrating 

the 6 positional  parameters  and  for  fine  tuning  the 3 beam  length o s e t .  The  10-parameter 

model  and  multiple  plane  constraint  are  used  in  the caliiration. The  procedures  shown in 

[6,10]  can  be  used to calibrate  the  parameters of each  tracker fist. The  parameters of the 

mirror  center  offset and gimbal axis misalignment are  constrained by (40). The  reason  for 

constraining  the  parameters  is  that  these  parameters  sometimes  tend to reach  unrealistic 

values  after  the  calibration.  Constraining  them  within  a  practical  range  is  a  way to ensure 

that  the  error  does  not  propagate  much. In the  first  set of experimental  data, 30 points 

were  measured on each  plane.  Twenty-five  points are used in the  calibration  and  the 

remaining 5 points are used  in the  verification.  The  calibrated  parameters are shown  in 

Table 4. 
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-2mm < c, , cy <2mm, -1mm < ez < lmm, - 1 m m  < al < lmm (40) 

In the  second  stage,  the  parameters to be  calibrated  in  the  multiple-beam  laser 

tracking  system are the  three beam  length  offset  and  the  translation  vectors  relating  the 

coordinate  system of tracker I1 to tracker I and  tracker I11 to tracker I. A standard pose 

algorithm [13] can  be  used to estimate  the  rotation  matrices  and the translation  vectors 

based  on all the  parameters  in  the  system  and  the  measurements.  These  can  be  used as the 

initial  guess of the  parameters to be  calibrated.  The  initial  values  for  the  beam  length  offset 

can be  set as those in  Table 4. The  procedures  for  the caliiration of multiple-beam  laser 

tracker using both  angular  and  distance  measurements are used in the  calibration. 

Figure 1 1 shows  the  calibration  results.  The  horizontal axis represents  the number of 

measurements  used  in  the  calibration  and  the  vertical axis denotes  the  values of the  plane 

residue.  The  plane  residual is given  in maximum, average  and  minimum  values.  The 

algorithm  converged  after 5 iterations.  The  condition  number is in  the  order of magnitude 

of lo5. The  average  plane  residual  reaches 0.04mm at the  end of iterations.  The 

parameters  calibrated fiom using  the  first  set of experimental  data  can also be  verified 

against the second  set of experimental  data.  The  calibrated  parameters  are  used  along  the 

angular  and  distance  measurements of the  second  experimental data to compute  the 3-D 

coordinates.  The  plane  residual is about 0.4mm which is 10 times  worse  than  that of the 

calibration. 
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Table  4  The  values of the  calibrated  parameters of tracker I and I1 and I11 (part I) 

I I tracker I 
1, (m) 

C0.9890 0.0340  0.14421 bZ 
1.5401 

[cx , cy] (m) 

0.0013 e2 (m) 
1 S716 a2 (radian) 
1.5712 a1 (radian) 
1.5708 dB2 (radian) 
[-0.0017  0.00101 

U I  (m)  0.0014 

a1 (m) 
[0.9564  0.2287  -0.181 71 n2 

2.1089 

I a7 (m) I 2.0276 

2.00 

1.50 ;se 

tracker I1 I tracker I11 I 
1.4788  1.6744 
[-0.9824  0.1408  0.12291 [0.9049  0.4114  0.10951 
r0.0014  -0.o0101 I r0.0013  o.00101 I 
1.5714 I 1.5719 I 
1.5719 

1.5719  1.5717 
1.5718 

0.0010 
0.001  3  0.0010 
0.0015 

1.7885 2.2396 
[0.9697  -0.1253  0.20981 [0.8951  -0.3191  0.31  141 
2.0358 I 2.1339 I 
[0.9347  0.0523  0.35161 [0.7962  -0.5339  0.28471 
1.8230 2.2521 

average 
minimum 

12 22 32 42 52 
number of measurements 

Figure  11  Calibration  results of the  multiple  tracker  and  multiple  plane  using  the  first  set 
of experimental  data 

Similar  calibration  procedures  can  be  executed to calibrate  the  three  trackers  using 

the  third  set of experimental  data. This time  15  out of 23  measured  points on each  plane 

were  used  in  the  identification  experiment,  and  the  rest 8 points  were  used  in  the 

verification  experiment.  The  calibrated  parameters are listed  in  Table  5.  The  condition 

number  is in the  order of lo5. Figure  12  shows  the  calibration  results.  The  average  plane 

residual  reached 15pm at  the  end of the  iterations.  This is definitely  better  than  the  result 

of the  calibration  using  the  first  set of experimental  data.  One  reason for the  smaller  plane 

residuals  is  that  the  smoothness of the  glass  plane  is  better  than  that of the  planes  formed 
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by CMM.  Another  reason  is  that  the  third  set of experimental data was collected  within  a 

smaller  workspace  than  the  first  one. 

0.03 
0.03 

* E 0.02 
.5 0.02 E = J  g .s 0.02 

5 0.02 

n 6 g 0.02 
a E 0.01 

0.01 

average 
maximum 

'minimum ."" 

12 22  32 42 52 

number of measurements 

Figure  12  Calibration  results of the  multiple  tracker  and  multiple  plane  using  the  third  set 
of experimental data 

Table  5  The  values of the  calibrated  parameters of tracker I and I1 and I11 (Part 11) 

tracker I tracker I11 tracker I1 
1, (m)  0.8826  0.7467 0.7692 
bl [0.0936  0.4254  -0.90021 [ -0.0121  0.9952  -0.09701 [0.0154  0.9776  -0.20981 
[cx , cy] (m) 

1.5718  1.5716  1.5713 a2 (radians) 
1.5716 1.5717  1.5714 a1 (radians) 
1.5716  1.5717 1.5703 d& (radians) 
[O.OOlO 0.00141 [0.0017  -0.00081  [-0.0014  0.0011] 

e2 (m) 

0.0042  0.041  1  0.0894 a1 (m) 
[0.0532  -0.9058  -0.42031  [-0.0716  0.0966  0.99271 [-0.0659  0.2117  0.97511 nl 
0.0014  0.001  1  0.0012 a1 (m) 
0.001  1  0.001  1  0.0010 

n2 

[0.0532  -0.9058  -0.42031  [-0.0716  0.0966  0.99271  [-0.0659  0.2117  0.97511 n3 
0.0040 0.041 1 0.0894 a2 (m) 
[-0.0007  -0.9055  -0.42441  [-0.0905  0.0959  0.99131 [-0.0943  0.2108  0.97301 

a? (m)  0.0042  0.041  1  0.0894 

33 



5 Summary 

In this  paper,  a  methodology  for  self-calibration of a  laser  tracking  measurement 

system  is  proposed.  Kinematic  models  that  describe  not  only  the  motion  but  also 

geometric  variations of system are developed.  Various  calibration  strategies  utilizing 

planar  constraints are proposed to deal  with  different  system  setups.  For  each  calibration 

strategy,  issues  about  the  error  parameter  estimation of the  system  are  explored to find out 

under  which  conditions  these  parameters  can be uniquely  estimated.  These  conditions 

reveal  the  applicability of the  planar  constraints to the  system  self-calibration.  Through 

error analysis,  it is found  that  the  angular  measurement  may stiU be used to predict  the 

coordinates of the beam  incidence  at  the  mirror s d a c e  of the  each  tracker,  even  though 

the  angular  measurement of a  gimbal  is  inferior to the  distance  measurement  in  a  laser. 

This claim is also backed  by the  simulation  studies.  The  simuhtion  and  experimental 

studies  also  support  the  claim  that  the  three-plane  three-tracker setup can be  applied to 

calibrate the multi-beam  LTS. 
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Appendix 

Proof of Theorem 3. ( 30 ) is  the  Jacobian of the  multiple-beam  laser  tracking  system. 

H,” 0 [ ; :’ ~ - ]  is  non-singular if 4 ( j = 1, 2, 3 ) is  non-singluar. . According to 

Theorem I ,  H; ( j = 1, 2, 3 ) is non-singular if and  only if vkj.(i=1,2, 3) are linearly 

independent. 

Whenever at least  three  independent  target  measurements  are  obtained by the 

second  and  third  trackers,  the  matrix  made  up of v, is non-singular,  which is shown 
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below. can  take  the  following  form  after  rearranging  its  rows, 

( 41 ) is non-singular if and only if the two sub-matrices [g] and [:] are  both  non- 

singular.  These  two  matrices are non-singular if and only if three  target  measurements 

obtained by the  second  and  third  trackers are independent. 

Proof of Theorem 4. The  condition of the  matrix  made UP of vkj and l k j  being  SingUla 

is the  sub-matrix 
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being  singular,  which  is  in  return  equivalent to the  following  matrix  being  singular 

(43 

Since = 1 1  uhll. Let a k ,  f i ,  f i  and ?& be scalars. If vectors [ukj’ 1 I T  is not  linearly 

independent,  there  exists  a  nonzero  scalar,  such  that the following two equations  are 

simultaneously  satisfied, 

where 

+ Y k  +?ilk = O  (45 

Without  the  loss of generality,  let us assume  that 7~ is non-zero. From ( 44 ), 

uk,4 = akuk,l  bkUk,2  ckuk,3 ( 46 

where 

a k  =-a, / ? i l k ,  bk = - p k  f q k ,  and c k   = - Y k   / q k ,  ( 47 1 

Substituting ( 45 ) into ( 46 ), it  follows  that 
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c 

Thus ak , bk , k satisfl ak + bkf ck = 1. On  the  other  hand, if ( 39 ) and ( 45 ) do not 

hold  simultaneously,  there  is  not a nonzero , such that ( 44 ) and ( 45 ) are 

simultaneously  satisfied.  Consequently [uUT 1IT is linearly  independent. 
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